Selective redox degradation of chlorinated aliphatic compounds by Fenton reaction in pyrite suspension.

نویسندگان

  • Hyeongsu Che
  • Woojin Lee
چکیده

Selective redox degradation of chlorinated aliphatics by Fenton reaction in pyrite suspension was investigated in a closed system. Carbon tetrachloride (CT) was used as a representative target of perchlorinated alkanes and trichloroethylene (TCE) was used as one of highly chlorinated alkenes. Degradation of CT in Fenton reaction was significantly enhanced by pyrite used as an iron source instead of soluble Fe. Pyrite Fenton showed 93% of CT removal in 140 min, while Fenton reaction with soluble Fe(II) showed 52% and that with Fe(III) 15%. Addition of 2-propanol to the pyrite Fenton system significantly inhibited degradation of TCE (99% to 44% of TCE removal), while degradation of CT was slightly improved by the 2-propanol addition (80-91% of CT removal). The result suggests that, unlike oxidative degradation of TCE by hydroxyl radical in pyrite Fenton system, an oxidation by the hydroxyl radical is not a main degradation mechanism for the degradation of CT in pyrite Fenton system but a reductive dechlorination by superoxide can rather be the one for the CT degradation. The degradation kinetics of CT in the pyrite Fenton system was decelerated (0.13-0.03 min(-1)), as initial suspension pH decreased from 3 to 2. The formation of superoxide during the CT degradation in the pyrite Fenton system was observed by electron spin resonance spectroscopy. The formation at initial pH 3 was greater than that at initial pH 2, which supported that superoxide was a main reductant for degradation of CT in the pyrite Fenton system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

Pyrite ash (PA) is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4) degradation. The effect of various operating variables such as catalyst and oxidant conce...

متن کامل

Efficiency of Photo-Fenton Process in Degradation of 2-Chlorophenol

Background & Aims of the Study: Phenolic compounds have been extensively used in industries for applications such as petrochemical, oil refineries, papers, plastics, steel, pharmaceuticals, textiles, coal conversion, and so on. Specified amounts of Phenolic compounds are lost in the process of their manufacturing and utilization and often cause environmental pollution problems....

متن کامل

Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces

Oxidation of pyrite (FeS2) plays a significant role in the redox cycling of iron and sulfur on Earth and is the primary cause of acid mine drainage (AMD). It has been established that this process involves multi-step electron-transfer reactions between surface defects and adsorbed O2 and H2O, releasing sulfoxy species (e.g., S2O32-, SO42-) and ferrous iron (Fe2+) to the solution and also produc...

متن کامل

Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants

The Fenton reaction is the most widely used advanced oxidation process (AOP) for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc) as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2) particles can generate H2O2 at their surface while simul...

متن کامل

Degradation of High-Concentration of Perchloroethylene from Aqueous Solution Using Electro-Fenton Process

Introduction: Perchloroethylene (PCE) is one of the most well-known chlorinated organic compounds recently detected in aqueous environments. The presence of PCE in aquatic ecosystems has caused many health problems and environmental challenges. Therefore, its removal and treatment from aqueous environments are essential. Materials and Methods: The electro-Fenton (EF) process was carried out in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 82 8  شماره 

صفحات  -

تاریخ انتشار 2011